
From the IEEE Intelligent Systems Special Issue on Humanoid Robotics, July/August 2000 GUEST 
EDITORS' 

Expanding Frontiers of Humanoid 
Robotics  
Mark L. Swinson, DARPA 
David J. Bruemmer, Strategic Analysis  

 
Mobile robots pose a unique set of challenges to artificial intelligence researchers. Such 
challenges include issues of autonomy, uncertainty (both sensing and control), and reliability, 
which are all constrained by the discipline that the real world imposes. Planning, sensing, and 
acting must occur in concert and in context. That is, information processing must satisfy not only 
the constraints of logical correctness but also some assortment of crosscutting, physical 
constraints. Particularly interesting among these robots are humanoids, which assume an 
anthropomorphic (human-like) form.  
A growing number of roboticists believe that the human form provides an excellent platform on 
which to enable interactive, real-world machine learning. Robots that can learn from natural, 
multimodal interactions with the environment might be able to accomplish tasks by means their 
designers did not explicitly implement and to adapt to the unanticipated circumstances in an 
unstructured environment. Ultimately, humanoids might prove to be the ideal robot design to 
interact with people. After all, humans tend to naturally interact with other human-like entities. 
Eventually, humans and humanoids might be able to cooperate in ways now imaginable only in 
science fiction. Humanoids might also provide a revolutionary way of studying cognitive 
science. As we review successes and failures in the field, we provide a contextual backdrop for 
understanding where humanoid research began, the dilemmas with which it currently struggles, 
and where it might take us in the future. We also discuss how these technological developments 
have and will continue to affect the ways in which we understand ourselves. 
 

A brief history of "thinking" robots 
In Plato's Timaus, we find that the soul, before captivity within a human frame, knows no 
constraints while freely traversing the nonphysical realm. Yet, once inside the human body, the 
soul finds itself confounded by the inconsistency of the physical world, struggling to relate its 
prior knowledge of perfect, heavenly archetypes to the muddled reflections the senses perceive. 
Early attempts to build robots that could think and act like humans met a similar fate. Often 
derived in simulated environments, these agents possessed perfect, a priori knowledge of their 
virtual, archetypal worlds. Once embodied, these robots struggled to relate to a noisy and all too 
often inconsistent flow of data streaming in and out from a host of real-world sensors and 
actuators. 
 
Understanding good, old-fashioned artificial intelligence. Instead of engineering effective, 
real-world behavior, classical AI emphasized computational intelligence. Researchers sought to 
implement rational thought processes and considered rational behavior to be an inevitable by-
product. Researchers paid little regard to the correspondence problem as they constructed 
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increasingly complex and large knowledge-based systems to capture and process semantic 
information. 
Researchers deemed symbolic representation paramount because it let agents operate on 
sophisticated human concepts and linguistically report on their action. As Donald Michie stated, 
"In AI-type learning, explainability is all."1 The resulting emphasis on symbolic representation 
and planning profoundly affected robotics. Although these systems produced elaborate and 
elegant control architectures, the intelligence in these systems remained exclusively with the 
designer. The robots were merely automata executing static and often brittle programs. 
 
Problems with hard-coded, top-down control. In their zeal to make robots think like humans, 
many researchers focused on high-level cognition and provided no mechanism for building 
control from the bottom up. Although intended to model humans, most systems did not, like 
humans, acquire their knowledge through interaction with the real world. When in the real world, 
these robots possessed little mastery over it. Even in the fortunate event that sensors could 
accurately connect internal archetypes to real-world objects, robots could only extend the 
knowledge thrust on them in rudimentary, systematic ways. Such robots carried out preconceived 
actions with no ability to react to unforeseen features of the environment or task. 
Once a cause of great optimism, attempts to create human-like intelligence became a favored 
target for philosophical criticism. In 1979, Hubert Dreyfus argued that computer simulation 
assumes incorrectly that explicit rules can govern intellectual processes.2 An ability to break 
rules, Dreyfus thought, better characterizes human intelligence. Rules allow only elementary 
capabilities and are routinely broken once we achieve true competence. He viewed this 
competence not merely as a new, more sophisticated set of rules but as the ability to serve 
principles that have not yet and might never become explicit. Another argument was that 
computer programs are inherently goal seeking and thus require the designer to know before 
hand exactly what behavior is desired (as in a chess match as opposed to a work of art).3 In 
contrast, humans are value-seeking-that is, we do not always begin with an end goal in mind but 
seek to bring implicit values to fruition, on the fly, through engagement in a creative or analytical 
process.  
Although some of the ultimate conclusions were premature, these arguments aptly called 
attention to the fact that static programs, explicit rules, and knowledge bases drove robots 
estranged from the real world. As such, robots remained information-processing machines, 
applicable only to highly structured domains such as assembly lines. At best, those who claimed 
to be creating human-like intelligence were labeled positivists. At worst, they were considered 
delusional. Most roboticists forsook the goal of human-like cognition entirely and focused on 
creating functional, high-utility agents, using the lower animal world as a model (if they even 
needed models). 
 
Toward a more robust, low-level knowledge. Realizing the limitations of hard-coded, 
externally derived solutions, many within the AI community decided to look to fields such as 
neuroscience, cognitive psychology, and biology for new insight. Before long, the 
multidisciplinary field of cognitive science drove home the notion that the planning and high-
level cognition of which humans are consciously aware represents only the tip of a vast 
neurological iceberg.4 The mainstay of human action, researchers argued, derives from motor 
skills and implicit behavior encodings that lie beneath the level of conscious awareness. 
Borrowing on this understanding, Philip Agre and David Chapman argued that robots should 



likewise spend less time deliberating and more time responding to a world in constant flux. 5 A 
new, behavior-based view of intelligence emerged that transferred the emphasis from intelligent 
processing to robust real-world action. 
Neurobiology provided compelling evidence for a behavior-based approach with studies on the 
behavioral architecture of low-level animals. In one experiment, scientists severed the 
connection between a frog's spine and brain, effectively removing the possibility of centralized, 
high-level control. They then stimulated particular points along the spinal chord and found that 
much of the frog's behavior was encoded directly into the spine.6 For instance, stimulating one 
location prompted the frog to wipe its head, whereas another location encoded jumping behavior. 
This implicit, reactive control layer was what classical AI methods had ignored. 
 

Bottom-up intelligence for more capable robots 
For a new wave of roboticists, the question is how best to impart these primitive behaviors to 
robots. Attempts to directly hard-code such low-level behavior have proven either impossible or 
ineffectual. Instead, an increasing number of roboticists look to machine learning techniques, 
including artificial neural networks, genetic algorithms, and reinforcement learning. Neural 
networks provide a "supervised" learning approach where a designer trains a system's response 
to stimulation by adjusting weights between network nodes. Reinforcement learning provides an 
"unsupervised," learning-with-a-critic approach where systems can learn mappings from percepts 
to actions inductively through trial and error. Evolutionary methods begin with an initial pool of 
program elements and use genetic operators such as recombination and mutation to generate 
successive generations of increasingly better controllers. 
Using these approaches and others, robots can learn by adjusting parameters, exploiting patterns, 
evolving rule sets, generating entire behaviors, devising new strategies, predicting environmental 
changes, recognizing the strategies of opponents, or exchanging knowledge with other robots. 
Such robots have the potential to acquire new knowledge at a variety of levels and to adapt 
existing knowledge to new purposes. Robots now learn to solve problems in ways that humans 
can scarcely understand. In fact, one side effect of these learning methods is systems that are 
anything but explainable. Careful design no longer suppresses emergent behavior but encourages 
it.  
 

Applying learning approaches to humanoid robots 
With the realization that the designer does not need to conceive solutions a priori, hope for 
building intelligent, human-like robots rekindled. By exploiting these learning techniques, 
roboticists have once again begun to tackle a variety of anthropomorphic capabilities. Many 
roboticists working with humanoids code learning mechanisms directly into their design 
environments and use them to hone existing behaviors, develop new behaviors, and string 
behaviors together. For instance, a designer can use a neural network to implicitly encode low-
level motor control for an arm reaching behavior and then use reinforcement learning to train the 
humanoid when to reach and grasp. If the humanoid still struggles, the designer might, for 
instance, optimize behavior using a genetic algorithm to tweak parameters controlling rotational 
torque. 
Although such methods have been invaluable, the devastating complexity of most humanoids has 
required specialization. The goal of human-like versatility has bowed to the goal of engineering 
specific human-like behaviors. The result has been humanoids that can exhibit impressive 



functionality within a highly restricted domain or task. The next step is for an increasing number 
of capabilities to reside on general-purpose machines, engineered for all tasks because they are 
engineered for none in particular. Recent mechanical advances have produced humanoid bodies 
such as Robonaut (see "Robonaut: NASA's Space Humanoid," by Robert O. Ambrose, Hal 
Aldridge, R. Scott Askew, Robert R. Burridge, William Bluethmann, Myron Diftler, Chris 
Lovchik, Darby Magruder, and Fredrik Rehnmark in this issue) that represent an important step 
toward this goal. 
Unfortunately, the software to enable such universal machines lags significantly. At first blush, 
the mechanical sophistication of a full-fledged humanoid body sounds like a devastating 
challenge to even the most robust learning technique. The more complex a humanoid body, the 
harder it is to place constraints necessary for productive learning. If we employ too few 
constraints, learning becomes intractable. On the other hand, too many constraints might curtail 
learning's ability to scale. Consequently, many of the most physically adept humanoid bodies 
tend to be driven by hard-coded behaviors or through a virtual reality human interface. 
Ultimately, the conventional learning techniques we describe are perhaps most limited because 
they are tools human designers wield rather than self-directed capabilities of the robot. We 
submit that this might not need to be the case. Although robots will always require an initial 
program, this does not preclude them from indefinitely, willfully, and creatively building on it. 
After all, humans also begin with a program encoded in their DNA. The key is that in humans 
much of this genetic code is devoted not to mere behavior but to laying a foundation necessary 
for future development.  
 

Automated development through real-world interaction 
A growing number of humanoid researchers believe that this ability to appropriately seed 
development will make learning tractable for humanoids. The goal is no longer for robots to 
merely learn (acquire knowledge and skill in a particular area) but also to develop (enrich 
cognitive ability to learn and extend physical ability to apply learning). Truly autonomous 
humanoids must ultimately play some role as arbiters of their own development, must be able to 
channel and structure learning across layers of control. This will require generalized learning 
starting from the ground up and continuing throughout the humanoid's life, affecting what the 
robot is, rather than merely what the robot does. 
Before we can transform a cognitive architecture into a developing mind, we must answer a host 
of difficult questions. How do we give humanoids the ability to impress their own meaning onto 
the world? How can humanoids direct their own development? How do we motivate this 
development? How much a priori skill and knowledge do we build in? Using what level of 
representation? What, if any, bounds should we impose? 
Although these questions might never have definitive answers, an emerging learning approach 
provides a unique, functional balance of human input, self development, and real-world 
interaction. This approach, which we call imitative learning, lets the robot continuously learn 
through multimodal interactions with a human trainer and the environment. The robot does not 
simply process incoming information but actively responds to natural visual, auditory, and tactile 
stimulation. The robot can pose questions, ask for actions to be repeatedly demonstrated, and use 
emotional states to communicate frustration, exhaustion, or boredom to the human trainer. 
Advocates of imitative learning see it as the cornerstone in a developmental foundation that can 
enable self-directed, future learning. 
As you might expect, giving humanoids the ability to interact profitably with humans is not easy. 



For imitative learning to succeed, robots must have some way of knowing which aspects of the 
environment to attend to and precisely which actions to reproduce. For instance, a robot should 
not imitate a cough or a scratch when a trainer shows it how to turn a crank. To guide robots 
through the process of imitative learning, we must give them the ability to recognize and respond 
to natural cues we give unconsciously through body language. 
 

How far have we come? 
This issue showcases a rich diversity of projects that use humanoid robots to model some subset 
of the physical, cognitive, emotional and social aspects of human body and experience. In 
"Social Constraints on Animate Vision," Cynthia Breazeal, Aaron Edsinger, Paul Fitzpatrick, 
Brian Scassellati, and Paulina Varchavskaia discuss an MIT project in which they are training a 
robot head called Kismet with eyebrows, eyelids, ears, and a mouth to discern and respond to 
social cues, such as nodding and eye contact, that are crucial in correctly guiding interaction. 
Bryan Adams, Cynthia Breazeal, Rodney Brooks, and Brian Scassellati discuss another robot 
platform, Cog, in "Humanoid Robots: A New Kind of Tool." They equipped Cog with a 
sophisticated visual system capable of saccades, smooth pursuit, vergence, and head and eye 
coordination through modeling of the human vestibulo-ocular reflex. Cog responds to visual 
stimulation, sounds, and the ways people move its body parts. By exploiting its ability to interact 
with humans, Cog can learn diverse behaviors including everything from playing with a slinky to 
using a hammer. Eventually, military commanders who might not know beforehand what tasks 
Cog will need to accomplish will be able to naturally and quickly task it. 
Work with imitative learning also progresses at Michigan State University, where researchers are 
using communicative learning to iteratively hone behavior as the humanoid responds to verbal 
feedback from a human trainer.7 The foundational principle is that all human-derived forms of 
representation bias the system and inhibit learning's ability to scale. Instead, they wish the 
humanoid to build layers of control using as little built-in representation as possible. Rather than 
storing semantic information, the humanoid treats all stimulation as low-level vectors. Thus, the 
principles that let the robot process and learn from visual stimulation will apply equally well to 
other capabilities such as object manipulation. 
Human-robot interaction plays a crucial role in the burgeoning market for intelligent service 
robots. Increasingly, robots that can serve as mobile, autonomous tour guides and information 
kiosks will grace public places. Sebastian Thrun, Jamie Schulte, and Chuck Rosenberg give an 
encouraging example in "Robots in Public Places: A Case Study." Their robot Minerva, a 
popular tour guide at the Smithsonian National Museum of American History, used a rich 
repertoire of interactive capabilities to attract people and guide them through the museum. 
Minerva's facial features and humanoid form greatly affected how people respond to it. 
An ambitious effort at Vanderbilt University is working toward intelligent, task-general service 
robots that can aid the elderly and disabled. To deal with the complexity inherent to humanoid 
bodies and tasks, Kazuhiko Kawamura, R. Allen Peters II, D. Mitchell Wilkes, W. Anthony 
Alford, and Tamara E. Rogers ("Toward Interactive Human-Humanoid Teaming: Foundations 
and Achievements") designed their robot Intelligent Soft-Arm Control as a multiagent system 
that devotes a separate agent to each functional area. For instance, one agent deals with arm 
movement while another interacts with humans. Using database associative memory, ISAC can 
store and structure the knowledge it acquires. To mimic long-term memory, DBAM uses a 
spreading activation network to form associations between database records. To efficiently 
structure its memories, ISAC's Sensory EgoSphere processes incoming perceptual data according 



to spatial and temporal significance. 
In "A Neurobiological Perspective on the Design of Humanoid Robots and their Components," 
Simon Gistzer, Karen Moxon, Ilya Rybak and John Chapin provide a tour of recent 
neurobiological findings that continue to impact the world of humanoid robotics. The authors 
explain the process by which aspects of motor execution are encoded into a modular neural 
architecture within the spinal system. This architecture expedites motor control learning by 
constrainings the output sent to limbs and by hierarchically structuringes control primitives at 
varying levels. Maja Mataric's article ("Getting Humanoids to Move and Imitate") provides 
convincing evidence that roboticists can exploit this model by coding or training a set of basis 
behaviors on which developmental learning can build. Imitative learning is then a process of 
matching perceived behavior to an assemblage of these a priori primitives.  
In "Using Humanoid Robots to Study Human Behavior," Chris Atkeson, Josh Hale, Mitsuo 
Kawato, Shinya Kotosaka, Frank Pollick, Marcia Riley, Stefan Schaal, Tomohiro Shibata, 
Gaurav Tevatia, Ales Ude and Sethu Vijayakumar discuss a collaborative, international endeavor 
that uses a 30 degree of freedom robot to emulate complex, full-body movement. For insight into 
human body movement, they use a unique motion capture system called a SenSuit which, when 
worn as an exoskeleton, allows researchers to record human movement trajectories for shoulders, 
elbows, wrists, hips, knees and ankles. This data helps to identify the underlying principles that 
constrain and optimize body movement. Ultimately, these principles will inform the way motion 
primitives are developed and used by humanoid designers. Currently, researchers have chosen to 
represent motion primitives using B-spline wavelets -- spikes in the kinematic graphs that 
characterize a specific joint movement. By providing an efficient way to specify and optimize 
multi-resolution motion trajectories, B-spline wavelets enable smooth, efficient movement.  
In "Tracing Patterns and Attention: Humanoid Robot Cognition," Luiz-Marcos Garcia, Anotnio 
Oliveira, Roderic Grupen, David Wheeler, and Andrew Fagg use attentional mechanisms to 
focus a humanoid robot on visual areas of interest. On top of this capability, the authors have 
implemented a learning system that lets the robot autonomously recognize and categorize the 
environmental elements it extracts. They equip robots with perceptual clues such as sound, 
movement, color intensity, or human body language (pointing, gazing, and so on). For rich 
sensor modalities such as vision, perception is as much a process of excluding input as receiving 
it. 
The articles in this special issue do not presume to exhaustively cover the realm of humanoid 
robotics. For example, in Japan, the electronics and automotive industries have played a key role 
in the resurgence of humanoids by developing robots capable of walking, climbing stairs, and 
even playing pianos. Although Japanese scientists have focused on the necessary mechatronics, 
they are also beginning to search for learning techniques that can scale indefinitely. At the 
University of Tokyo, researchers are using a learning methodology they call interactive teaching 
to give robots the ability to drive their own development. A robot uses Bayesian networks to map 
sensor evidence to behavior and then assigns each mapping a confidence rating. In the beginning 
stages, confidence ratings are low and the robot must frequently ask a human trainer for help 
deciding between competing actions. With practice, the robot requires less intervention from the 
human trainer until eventually it can autonomously complete a task. When the task changes, the 
robot can again ask for help.8  
 

What does the future hold? 
Although these projects are important steps in the right direction, functional results come slowly. 



Like the human infants they model, developing humanoids are inefficient at most tasks and 
require intensive training. One implication of this research is that to create human-like 
adaptability and versatility, introducing an element of human frailty and inconsistency might be 
necessary. 
As robots become increasingly pervasive, it remains to be seen whether humanoids can become 
crucial arbiters of this new world, able to favorably coexist with humans while exploiting the 
way we have structured our environment. Recent humanoid research has suggested that 
humanoid robots might one day perform surgery, build and maintain space stations, serve meals, 
or deliver packages throughout an office building. Moreover, researchers will task them naturally 
through gestures and speech. Nonetheless, there are still many who view humanoid research as a 
foolhardy, misdirected pursuit. Both inside and outside robotics, skeptics maintain that we could 
better spend money and time engineering targeted and arguably more affordable robotic 
solutions to fit specific needs. 
Certainly, myriad tasks exist for which an ability to converse, learn, and interact is not necessary. 
For highly structured environments, factory automation robots are extremely adroit, efficient, 
and reliable. Even for tasks such as landmine detection, which might benefit from adaptation and 
autonomy, the robots do not necessarily need a human form or the ability to interact with 
humans. However, it takes little imagination to conceive the benefits of bringing highly capable 
humanoid agents to bear in scenarios spanning everything from firefighting or rescue operations 
to assisting the elderly and disabled. Moreover, such skepticism overlooks all that humanoid 
research can tell us about the way we think, learn, adapt, interact, develop, and evolve from an 
entity whose cognitive existence is not limited to a biologically constrained lifespan. 
On the other hand, humanoids have much yet to prove. Will humanoid research propel robotics 
on to great heights, channeling ideas from diverse fields toward an ultimate goal? Or will the 
quest to model ourselves prove to be a stumbling block, or worse? We might be our best or worst 
models of intelligence. Although cognitive neuroscience will continue to contribute much to our 
self-understanding, we by no means fully appreciate the many internal processes that actually 
produce our intelligence. 
Roboticist Rodney Brooks voiced similar sentiments, arguing that our view of how we think and 
act is tainted with subjectivity.9 We cannot wholly transcend our biased perspective. The best we 
can do is neutralize its effect by bringing humanoid bodies in line with our own. Most likely, we 
will never fully understand, much less recreate, everything that it means to be human. As the 
frontiers of our self-understanding expand, humanoid robots might simply follow (and at times 
propel) our continuously changing conception of what we are.  
On one hand the human form can be viewed as an absurd and fragile vessel, ill-suited for any 
one task and redeemed only by the intelligence within. On the other hand, the human body 
provides us with a unique ability to learn and apply learning. Whereas dualistic thinking has 
often rendered the body little more than a tomb for the mind, it may be that, to the contrary, 
human-like intelligence requires a human-like body.  
Humanoid robotics provides a unique forum in which to continue this age-old debate. Are 
humanoids destined to remain lumbering, overly complex, and ineffectual, or, like those they 
model, will they manage to grow into their ungainly form? This special issue attests that rather 
than hampering the application of AI, physical embodiment in the human form provides a 
necessary and useful grounding, letting humanoids surpass their original programming as they 
endeavor to communicate with their creators.  
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